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Abstract--Control theory gives very few examples of control 

systems for  which the closed-form solution to the L inear-

Quadratic (LQ) optimization problem exists. This paper  

descr ibes two such systems of 2nd and 4th order  concerning 

magnetic bear ings and gives the closed-form solutions to the 

LQ-problems. The controller  obtained provides the LQ-

optimal bear ing forces and minimizes copper  losses in coils. 

The closed-loop system has a var iable structure. Stability of 

the system is analyzed by using the Van der  Pol method. 

Theoretical results are ver ified by simulations and 

exper iments. The problems of controller  simplification are 

also discussed. 

 

I. INTRODUCTION 

 

Due to their having no mechanical contact and requiring 

no lubrication, Active Magnetic Bearings (AMBs) are often 

used for suspending high speed rotors subjected to 

gyroscopic and disturbance forces. The stable suspension of 
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the rotor is provided by magnetic attractive forces exerted 

by controlled electromagnets. Physical limitations imposed 

on bearing forces, currents and voltages lead quite naturally 

to the formulation of a control strategy as an optimization 

problem where the goal is to minimize values of control 

variables. However, AMBs must also provide a specified 

accuracy in the rotor positioning, with higher positioning 

accuracies requiring greater values of control variables. The 

optimal compromise can be obtained by minimizing a 

perfomance index which would include both of the above 

requirements. Control theory offers a great number of 

perfomance indices and methods of optimization. As it 

follows from practical applications, one of the most suitable 

approaches for AMB control seems to be that of Linear-

Quadratic (LQ) optimal control [1] – [3]. We shall use the 

following interpretation of this method. Consider a system 

modeled by a controllable and observable state-space 

description 
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where x(t) is the sysn -vector of state variables, q(t) the m-

vector of output variables, u(t) the m-vector of input 

variables, and A,B,C are all constant matrices of appropriate 
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dimensions. It is required to find the control u=u0 which 

brings the system (1) from an arbitrary initial state to the 

zero state while minimizing the quadratic integral 

perfomance index 
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where ρ is a positive weighting scalar. As evident from (2), 

we consider the case where all the output variables are 

weighted equally, as are the input variables. The optimal 

control is known to be given by a linear transformation of 

the state vector 
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where the syssys nn × symmetric matrix P is the only positive 

definite solution to the algebraic matrix Riccati equation 
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It should be mentioned that x(t), q(t) and u(t) can also be 

taken as complex vectors, with a complex system matrix A 

and a Hermitian Riccati matrix P, and with the “T”  

denoting the conjugate transposition. The complex variable 

notation is often used in dynamic analysis and control of 

rotational systems (see, for example, [4], [5], and references 

therein). Since the order of a system treated in the complex 

state-space approach is half of that in the real approach, the 

optimal controller design is far simpler and more 

comprehensive. 

The main difficulty of the task lies in the solution of 

Riccati Eq.(4) which represents a set of 2/)1( +syssys nn  

non-linear algebraic equations. Control theory gives very 

few examples of control systems for which the analytical 

solution to this Riccati equation exists. Therefore, the 

optimal AMB control design is usually based either on a 

numerical solution of (4) or, most often, on the pole 

placement method [6] combined with use of the asymptotic 

properties of the optimal closed-loop poles for 0→ρ  and 

∞→ρ , [3]. 

The principal theme of this paper is to show that there are 

at least two kinds of controller design problems regarding 

AMBs for which there exist an analytical solution to the 

Riccati equation and, therefore, closed-form solutions to the 

LQ-optimization problem. 

One of the problems considered is  that of designing a 

typical linear One-Degree-Of-Freedom (1-DOF, or second-

order) current control system. The LQ-design for this 

system is well-studied for the limiting cases ∞→ρ  

(“expensive”  control) and 0→ρ  (“cheap”  control), [6]. In 

this paper the LQ-problem is solved for an arbitrary value 

of ρ. For convenience of designers, parameter ρ is 

expressed in terms of the undamped natural frequency of 

the closed-loop system to provide a more physically 

intuitive interpretation. 

The other design problem considered is that of designing 

a common 5-DOF voltage control system for suspending a 
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rigid gyroscopic rotor which has linear mechanical and non-

linear electromagnetic subsystems. The mechanical 

subsystem consists of three 1-DOF (or second-order) 

systems which describe translational motions of the rotor, 

and one 2-DOF (or fourth-order) gyroscopic system which 

describes rotational motions of the rotor. In this paper the 

LQ-optimal control forces and moments are found. It 

should be noted that in the case of the 2-DOF system a 

fourth-order real (or a second-order complex) Riccati 

equation is analytically solved. 

The optimal control currents and voltages are determined 

from the electromagnetic subsystem in such a way that they 

produce the optimal forces and moments and, at the same 

time, minimize copper losses in the coils. Such an approach 

leads to the switching drive control or the so-called external 

linearization [6]. Because of errors in tracking the control 

currents, the problem of stability of the closed-loop system 

arises. In this paper the problem is treated theoretically by 

using the Van der Pol method, and by simulations and 

experiments. 

The other problem discussed in the paper is the 

simplification of the controller obtained. This controller is 

switching, multi-coupled and speed-dependent, i.e. 

relatively complicated; controller simplification might be 

considered advisable. However, it is shown that there are 

applications where simplifying the controller leads to a 

significant deterioration of the system perfomance. 

 

 

II. ONE --DOF AMB SYSTEM 

 

The model of the system is shown in Fig.1. The system 

incorporates a ferromagnetic body of mass m and two 

counteracting electromagnets with coil currents i1 and i2 . 

The body can move only in the y-direction. The goal is to 

stabilize the body at the operating point given by the bias 

currents i1=i2=i0 and the reference position y=0 at which 

both the air gaps have the nominal value δ. Forming the 

currents as i1=i0+i, i2=i0-i, where i is the control current, 

and linearizing the force-current relation, yield the 

following well-known linear model of the system [6], [7]: 

 

icycym iy =−
��

   (5) 

 

where cy is the position “negative”  stiffness, and ci the 

current stiffness of the system. Note that since the plant 

poles are ks +=1 , ks −=2 , where mck y /=  , the 

open-loop system (5) is evidently unstable. Applying to 

system (5) the LQ-design procedure (1)-(4) yields the 

optimal Proportional-Derivative (PD) control law (see also 

the Appendix A and [8]) 
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where the feedback gains are given by 
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In order to avoid using the weighting parameter ρ in 

(7), we reduce the characteristic polynomial of the optimal 

closed-loop system (5) and (6), 

2
12

2 )/()/()( kmcgsmcgss ii −++=ϕ , to the form 

2
00

2 2)( ωζωϕ ++= sss , where ωo is the desired value of 

the undamped natural frequency of the system, and ζ, the 

relative damping. Equating these polynomials, we have 

)/(1 44
0 k−= ωρ , ω0 ≥ k , 2/)/1(2 2

0
2 ωζ k+= , and 

finally 
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02 += ω   (8) 

 

Thus, (6) and (8) are the solution to the LQ-design 

problem for 1-DOF AMB system (5). It contains the 

varying parameter ω0 (instead of ρ); �
0 has a more clear 

physical sense. The analysis of the dynamic properties of 

the optimal closed-loop system (5), (6) and (8) is beyond 

the scope of this paper. Note that the limitating cases 

0→ρ  (“cheap”  control) and ∞→ρ  (“expensive”  

control) are analyzed in [6]. 

 

III. FIVE-DOF AMB SYSTEM 

 

As shown in Fig. 2, a rigid gyroscopic rotor of mass M 

,with equatorial and axial principal moments of inertia J1 

and J3 respectively, spins at the constant rotational speed ω 

in two radial and one axial AMBs. We shall determine the 

position of the rotor-attached frame Cξηζ with respect to 

the fixed frame Oxyz by the Cartesian coordinates xc,yc,zc of 

the origin (center of mass) C and by the angles of tilting ϕx 

and ϕy about x and y axis, respectively. The vector q=(q1, ... 

, q5)
T=(xc, yc, zc, ϕx, ϕy)T denotes the output variables of the 

suspension system. 

Let the AMBs contain ten electromagnets having the 

currents i=(i1, ... , i10)
T; input voltages v=(v1,..., v10)

T; 

resistances rs; and inductances Lsn= Lsn(q); s,n=1, ... , 10. We 

introduce the vector of the generalized magnetic forces 

F=(F1, ... , F5)
T and the vector of the bearing magnetic 

forces (or reactions) Q=(Q1, ... , Q5)
T applied at the journal 

centres O1 and O2, as shown in Fig. 2. The forces Q1 and Q3 

act in the x-direction, Q2 and Q4 act in the y-direction (they 

are not shown in Fig. 2), and Q5 acts in the z-direction. The 

relation between F and Q is given in the Appendix B.  

We write the Lagrange-Maxwell dynamic equations in 

the form 
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  (9) 
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Note that (9) describes the translational motions of the 

rotor, and that (10), which is coupled by the gyroscopic 
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terms, describes the tilting motions. Equation (11) 

represents the balance of EMFs and voltages. 

The control goal is to stabilize the rotor at the reference 

position q=0 so that minimization of the perfomance index 

(2) (where u now denotes the magnetic forces F) and the 

copper losses in the AMB coils is provided. Decomposing 

the suspension system (9)-(11) into the mechanical 

subsystem (9), (10) and the electromagnetic subsystem 

(11), we shall solve the control problem in two stages. First, 

we shall find the optimal control forces F1=F1
0, F2=F2

0, 

F3=F3
0 and the optimal control moments F4=F4

0 and 

F5=F5
0 which minimize the perfomance index (2). Second, 

we shall determine the optimal control currents i=i0 and 

voltages v=v0 which produce the optimal forces and 

moments F0 and, at the same time, minimize the copper 

losses in the coils. 

There are four control systems at the first stage: three 1-

DOF systems (9) and one 2-DOF system (10). By applying 

the LQ-design procedure (1)-(4) to each of the systems (9), 

one easily determines that the optimal control forces are 

given by 3,2,1   ),2( 0
2
0

0 =+−= jqqMF jjj
�

ςωω , where 

ω0=ρ−−1/4 is the desired undamped natural frequency of the 

translational motions, and 2/2=ς  is the optimal relative 

damping.  

Applying now the LQ-design procedure (1)-(4) to the 2-

DOF system (10), one can verify that the fourth-order real 

(or the second-order complex) Riccati Eq. (4) has an 

analytical solution (see the Appendix C). Using this 

property of the system (10), we can formulate a closed-form 

solution of the LQ-design problem. The optimal control 

moments are given by 
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where k1, k2 and k3 are, respectively, the optimal stiffness, 

damping and radial correcting factors of the tilting motions 

of the rotor. These factors are given by 
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Here h=ωJ3/J1 is the gyroscopic parameter, and Ω0=ρ−1/4 

is the desired undamped natural frequency of tilting 

motions (about x and y axes) for the non-spinning rotor (i.e. 

with ω and h equal to zero). The variation of k1, k2 and k3 

with the rotational speed ω is shown in Fig.3. As ∞→ω  

the stiffness and damping factors k1 and k2 approach to zero, 

and the radial correcting factor k3 becomes equal to )0(1k , 

or 2
0Ω . It is evident, then, that the optimal feedback gains 

are not constant; they vary with the rotational speed ω in 

accordance with (13). Note that an optimal speed-dependent 

controller for AMB is discussed by several authors (for 

example [6], [9]), but all of them use numerical approaches. 

Let us consider now the second stage of the control 

design problem. The goal is to find the currents i=i0 and 

voltages v=v0 which produce the optimal generalized forces 
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F=F0 or the optimal bearing forces Q=Q0 related to F0 by 

the linear transformation (see the Appendix B) and, at the 

same time, minimize the copper losses in the coils. For 

example, consider use of the actuator shown in Fig.4 to 

realize bearing force Q1
0. Let the inductances be given by 

)/( ,0 , )/( 12212111 xkkLLxkkL pLpL +==−= δδ , where 

x1=xc+z1ϕy is the coordinate of the journal center O1, and kL 

and kp are the structure parameters of a radial AMB [5] 

( 924.0=pk  for an eight-pole radial AMB). Accordingly 

the bearing force is 

[ ] 2/ )()( 2
2

2
1

2
1

2
11 pLpp kkixkixkQ −− +−−= δδ . Optimal 

currents i1
0 and i2

0 must produce the force Q1=Q1
0. To 

obtain a unique solution, we introduce the additional 

relation,  

 

[ ] min, )()( 2
2

2
1 =+ titir     (14) 

 

which minimizes copper losses in the coils. The solution is 

given by 
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The physical sense of algorithm (15) is obvious : 

depending on the sign of the force Q1
0, it is only the first or 

only the second electromagnet that operates. Note that such 

a driving mode is known as the external linearization [6]. 

The voltages v=v0 which induce the optimal currents i=i0 

may be found from (11) by designing ten current tracking 

systems to reduce the tracking errors sss iii −=∆ 0  to zero. 

For example, the equation in terms of current i1 can be 

written, using the assumption δ<<)(1 txk p , as 
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1
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where δδ /,/ 00 pvL kLCkL ⋅== . Consider the control 

law given by 

 

111
0
1

0
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�
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where λ is a positive constant. Substituting (17) into (16) 

yields the differential equation of the closed-loop tracking 

system 

 

0
11

1 ii
dt

di
=+τ    (18) 

 

where λτ /0L=  is the time constant of the system. Thus, 

the optimal controller obtained due to (15) has a variable 

structure. 

 

IV. ANALYSIS OF STABILITY 

 

For simplicity, we analyze stability of the 1-DOF closed-

loop system with controlled coordinate x1 and the actuator 
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shown in Fig.4. Assuming that δ<<(t) x k p 1  and taking 

(15) and (18) into account, the dynamic equations become 
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where 22
21 /)( lMzJm +=  is the suspended mass. This is a 

variable structure system. 

We solve the problem of equilibrium state stability of the 

system (19)-(23) by finding conditions at which periodic 

motions may occur in the system. Applying the Van der Pol 

method, we rewrite (19) in the form 

 

),,( 1211
2
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where ωp is the unknown frequency of the periodic motion, 

and function [ ] 1
2

211121 /),(),,( xmiiQxii pωψ +=  is assumed to be 

small. The solution of (24) is presented in the form 

tbtatx pp ωω sincos)(1 += , where a and b are the 

unknown slowly varying functions of time which satisfy the 

equations 
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and where θ =2π/ωp is the period of the motion. To solve 

Eqs.(25), we successively determine the force Q1
0(t) from 

(23), the currents i1
0(t) and i2

0(t) from (22), and the actual 

currents i1(t) and i2(t) by integrating (21); finally, we 

substitute the expressions i1(t) and i2(t) into (20). Note that, 

as shown in Fig. 5, the periodic motions may be represented 

by the elliptic trajectory in the phase plane 11, xx
�

. The 

straight line 101 )2/( xx ζω−=
�

 is the switching line of the 

electromagnets. At point 1 (t=0, θ, 2θ, ...) the first 

electromagnet is switched off and the second electromagnet 

is switched on; and at point 2 (t=θ/2, 3θ/2, ...), vice versa. 

After all conversions we obtain 

)/2 /()(/ 0ωζτωµ −= pdtdA , where 2/122 )( baA +=  is 

the amplitude of the periodic motion, and µ(ωp) is a positive 

function of ωp . The system considered will be stable if 

dA/dt<0, and unstable if dA/dt>0 . The stability condition is 

therefore  

 

0/2 ωζτ <    (26) 
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Note that the system instability results from the phase lag 

of the actual force Q1(t), and that τ is equal to the time of 

the system transition from point 2 into point 3 (Fig. 5). 

 

V. NUMERICAL AND EXPERIMENTAL RESULTS 

 

To illustrate the validity of the stability condition a 

cryogenic turboexpander [7] is used here as an example. 

We have the following parameters: m=2.3 kg, δ=0.3 mm, 

kp=0.924, kL=11.5⋅10-6 Hm. Numerical simulation has been 

conducted by integrating (19)-(23) with selection of 

ω0=500 rad/s (80 Hz) and ζ=0.707  for different time 

constants τ  of the current tracking system. In accordance 

with the theoretical result, the system is unstable for τ>τ∗, 

where τ∗=2ζ /ω0=2.8 ms. Responses of the system to a step 

of 0.1δ in the displacement x1 are shown in Fig. 6. It can be 

seen that the system is stable for τ<τ∗ (curve 1) but unstable 

for τ>τ∗ (curve 3), and that it possesses periodic motion for 

τ=τ∗ (curve 2). This numerical result is predicted by the 

theoretical one.  

Figure 7 presents a comparison of the experimental and 

theoretical diagrams of the system stability in the plane 

ζ , ω0 for τ=1.1 ms. The experimental curve deviates from 

the theoretical straight line due to the influence of the time 

constant of the differentiator (0.2 ms) that is used to obtain 

the velocity 1x
�

, but which is not taken into account in 

Sec.IV. Therefore, we can say that the theoretical results are 

qualitatively verified experimentally. 

 

VI. CONTROLLER SIMPLIFICATION  

 

Generally speaking, the control system obtained is not 

very simple to implement because the controller used is 

switching, multi-coupled, and dependent on the rotational 

speed ω. Since there is a practical interest in simplification 

of the controller, let us discuss this problem. 

First of all, the simplification may be achieved by using a 

linear (not switching) controller. A linear control is based 

on a linearized model of a system. Since a magnetic force is 

a parabolic function of current, the linearization is 

impossible at the point with zero current. We must, 

therefore, introduce bias currents resulting in additional 

copper losses. Therefore, a linear controller does not 

minimize copper losses in coils. 

The simplification may be also achieved by dividing the 

large system into subsystems with a local control of each 

subsystem. Such an approach is called decentralized control 

and has been discussed by several authors. Schweitzer [6], 

starting from the fact that the gyroscopic coupling does not 

destabilize the system, proposes to use a decoupled 

controller designed for the non-rotating case and claims that 

the deterioration in perfomance is almost negligible in 

many cases. Some different results have been obtained in 

[10]. Figure 8, taken from [10], shows the unbalance 

responses of the radial AMB with a 1 µm eccentricity of the 

center of mass of the gyroscopic rotor for the flywheel 

energy storage system prototype. The nominal rotational 

speed is 12000 r.p.m. It is easily seen that the centralized 

controller provides significantly smaller control voltages 
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than the decentralized one (control forces and currents are 

approximately proportional to voltages). It follows that the 

most simple decentralized controller can not provide good 

perfomance in all cases. 

 

VII. CONCLUSION 

 

The paper presents the closed-form solution to the LQ-

design problem for two AMB control systems. The result 

seems to be useful for both high speed AMB applications 

and pedagogical aims. The minimization of copper losses in 

coils has yielded a control system with a variable structure. 

The analysis of stability of the system has resulted in a 

simple relationship between a natural frequency, damping 

factor and time constant of the current tracking system. 

There is a good correlation between analytical, numerical 

and experimental results. It has been also established that 

the simplification of the controller by its decentralization 

may result in a significant deterioration of the system 

perfomance. 
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APPENDIX 

 

A. We reduce (5) to the canonical form (1) and write 

matrix P as follows: 
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Matrix Riccati Eq. (4) yields the set of equations 

0 2 2
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2 =−− ρρ pkp , 2
2
3  2 pp ρ= , 

3
2

321 / pkppp −= ρ , having the evident analytical 

solution [ ] 2/12/14
3 ) /11(1   2 kkp ρρ ++= , 

[ ]2/142
2 ) /11(1 kkp ρρ ++= ,

[ ] 2/12/142/143
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B. Vectors F and Q are correlated by the linear 

transformation 
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C. Considering the 2-DOF system, we rewrite Eqs.(10) in 

the complex form 

 

ujh =− ϕϕ ���
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where ,yx jϕϕϕ +=  1514 // JjFJFu += , 13 / JJh ω= , 

1−=j . Using the complex state-space approach, we 

have 
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The second-order complex matrix Riccati Eq.(4) 

embodies four scalar equations 
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having the analytical solution 

2/1
422/14384

4

43
2
4224

3
4321

8464

224

�
�

�

�

�
�

�

�
−	

	




�

�
�




�
+=

==+=

h
h
h


 p

,p
h

p,p

  h

p,  hpp
h


p

 

The same result can be obtained by using the real state-

space approach. In this case we write 
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The fourth-order real matrix Riccati Eq.(4) embodies ten 

scalar equations (for brevity, they are omitted). One can 

verify that because of the symmetries of the model (10) the 

following six relations take place: 

10564928173 � �,� �,� �,� �0,�� =−=====  (these 

relations can be obtained, for example, by expanding the 

functions 10,...,1),(�s =sh , into a power series). For this 

reason, the Riccati Eq.(4) actually only embodies the four 

scalar equations obtained above (where p1=π1, p2=π2, 

p3=π5, p4=π6). The advantages of the complex state-space 

approach are evident. 
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FIGURE CAPTIONS 

 

For the paper No. 96-032 by Yuri N. Zhuravlyov “On 

LQ-control of magnetic bearing”  

 

Fig. 1. Model of 1-DOF magnetic bearing system. 

Fig. 2. Model of rigid gyroscopic rotor-magnetic bearing 

system. 

Fig. 3. Variation of optimal stiffness (k1), damping (k2) 

and radial correcting (k3) factors with rotational speed. 

Fig. 4. Radial bearing actuator generating force Q1. 

Fig. 5. Periodic motion trajectory in the phase plane. 

Fig. 6. Step responses of suspension system: 

(1) τ=1.4 ms, (2) τ=2.8 ms, (3) τ=5.6 ms. 

Fig. 7. Theoretical (1) and experimental (2) stability 

boundaries for τ=1.1 ms . 

Fig. 8. Unbalance responses: (1) centralized control, (2) 

decentralized control. 

 

 


